

pixiv-api documentation

A library for the Pixiv API.

Install with:

$ pip install pixiv-api

Quickstart

To start making requests to the Pixiv API, instantiate a client object.

from pixivapi import Client

client = Client()

The client can be authenticated to Pixiv’s API in multiple ways. One is by
logging in with a username and password:

client.login('username', 'password')

And another is with a refresh token.

client.authenticate('refresh_token')

Once authenticated, a refresh token can be saved for future authorizations.

refresh_token = client.refresh_token

After authenticating, the client can begin making requests to all of the
Pixiv endpoints. For example, the following code block downloads an
image from Pixiv.

from pathlib import Path
from pixivapi import Size

illustration = client.fetch_illustration(75523989)
illustration.download(
 directory=Path.home() / 'my_pixiv_images',
 size=Size.ORIGINAL,
)

And the next code block downloads all illustrations of an artist.

from pathlib import Path
from pixivapi import Size

artist_id = 2188232
directory = Path.home() / 'wlop'

response = client.fetch_user_illustrations(artist_id)
while response['next']:
 for illust in response['illustrations']:
 illust.download(directory=directory, size=Size.ORIGINAL)

 if response['next']:
 response = client.fetch_user_illustrations(
 artist_id,
 offset=response['next'],
)

API

Client

	
class pixivapi.client.Client(language='English', client_id='KzEZED7aC0vird8jWyHM38mXjNTY', client_secret='W9JZoJe00qPvJsiyCGT3CCtC6ZUtdpKpzMbNlUGP')

	A client for the Pixiv API.

	Variables

	
	language (str) – The language tag translations should be in.

	client_id (str) – The client ID. Typically, leaving this as
default is ok.

	client_secret (str) – The client secret. Typically, leaving
this as default is ok.

	account (Account) – Basic details of the logged in account.

	access_token (str) – The access token used to authorize requests.

	refresh_token (str) – The refresh token used to obtain new access
tokens.

	session (requests.Session) – The requests session.

	
download(url, destination, referer='https://pixiv.net')

	Download a file to a given destination. This method uses
the client’s access token if available.

	Parameters

	
	url (str) – The URL to the file.

	destination – The destination file. Must be writeable.

	referer (str) – The Referer header.

	Raises

	
	FileNotFoundError – If the destination’s directory does
not exist.

	PermissionError – If the destination cannot be written to.

	
login(username, password)

	Log in with username and password to fetch an access token
and a refresh token. Assigns the tokens to instance variables.

	Parameters

	
	username (str) – Your username.

	password (str) – Your password.

	Raises

	LoginError – If login fails.

	
authenticate(refresh_token)

	Use a refresh token to obtain a new access token. Assigns
both tokens to instance variables.

	Parameters

	refresh_token (str) – The refresh token.

	Raises

	LoginError – If authentication fails.

	
search_illustrations(word, search_target=<SearchTarget.TAGS_PARTIAL: 'partial_match_for_tags'>, sort=<Sort.DATE_DESC: 'date_desc'>, duration=None, offset=None)

	Search the illustrations. A maximum of 30 illustrations are
returned in one response.

	Parameters

	
	word (str) – The search term.

	search_target (SearchTarget) – The target for the search term.

	sort (Sort) – How to sort the illustrations.

	duration (Duration) – An optional max-age for the illustrations.

	offset (int) – The number of illustrations to offset by.

	Returns

	A dictionary containing the searched illustrations, the
offset for the next page of search images (None if there
is no next page), and the search span limit.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
 'search_span_limit': 31536000,
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustration(illustration_id)

	Fetch the details of a single illustration.

	Parameters

	illustration_id (int) – The ID of the illustration.

	Returns

	An illustration object.

	Return type

	Illustration

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustration_comments(illustration_id, offset=None, include_total_comments=False)

	Fetch the comments of an illustration. A maximum of 30 comments
are returned in one response.

Note: The total_comments key does not equal the number
of comments that will be returned by the API. If requesting all
the comments, use the next key to determine whether or not
to continue, not the total_comments key.

	Parameters

	
	illustration_id (int) – ID of the illustration.

	offset (int) – Number of comments to offset by.

	include_total_comments (bool) – Whether or not to include a
the total number of comments on the illustration. If set to
False, the total_comments key in the response will be 0.

	Returns

	A dictionary containing the comments, the offset for the
next page of comments, and the total number of comments.

{
 'comments': [Comment, ...], # List of comments.
 'next': 30, # Offset to get the next page of comments.
 'total_comments': 142,
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustration_related(illustration_id, offset=None)

	Fetch illustrations related to a specified illustration. A
maximum of TODO are returned in one response.

	Parameters

	
	illustration_id (int) – ID of the illustration.

	offset (int) – Illustrations to offset by.

	Returns

	A dictionary containing the related illustrations and
the offset for the next page of illustrations.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustrations_following(visibility=<Visibility.PUBLIC: 'public'>, offset=None)

	Fetch new illustrations from followed artists. A maximum of 30
illustrations are returned in one response.

	Parameters

	
	visibility (Visibility) – Visibility of the followed artist;
PUBLIC if publicly followed; PRIVATE if privately.

	offset (int) – The number of illustrations to offset by.

	Returns

	A dictionary containing the new illustrations and
the offset for the next page of illustrations.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustrations_recommended(content_type=<ContentType.ILLUSTRATION: 'illust'>, include_ranking_illustrations=False, max_bookmark_id_for_recommend=None, min_bookmark_id_for_recent_illustrations=None, offset=None, bookmark_illust_ids=None, include_ranking_label=True)

	Fetch one’s recommended illustrations.

	Parameters

	
	content_type (ContentType) – The type of content to fetch.
Accepts ILLUSTRATION and MANGA.

	include_ranking_illustrations (bool) – If True, the top
10 ranked illustrations daily are included in the response.
If False, the ranking_illustrations key in the response
dict will be empty.

	max_bookmark_id_for_recommend (int) – The maximum bookmark
ID for recommended illustrations, used for changing the
returned illustrations.

	min_bookmark_id_for_recent_illustrations (int) – The minimum
bookmark ID for recent illustrations, used for changing
the returned illustrations.

	offset (int) – The number of illustrations to offset by.

	bookmark_illust_ids (list) – A list of illustration IDs.

	include_ranking_label (bool) – Whether or not to include
the ranking label.

	Returns

	A dictionary containing the recommended illustrations and
the parameters for the next page of illustrations.

{
 'contest_exists': False, # Does a contest exist?
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': { # Parameters to get the next set of illustrations.
 'min_bookmark_id_for_recent_illustrations': 6277740037,
 'max_bookmark_id_for_recommend': 6268205545,
 'offset': 0,
 },
 'ranking_illustrations': [Illustration, ...] # Ranking illust.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustrations_ranking(mode=<RankingMode.DAY: 'day'>, date=None, offset=None)

	Fetch the ranking illustrations. A maximum of TODO are returned
in one response.

	Parameters

	
	mode (RankingMode) – The ranking list to fetch.

	date (str) – The date of the list, in %Y-%m-%d format.

	offset (int) – The number of illustrations to offset by.

	Returns

	A dictionary containing the ranking illustrations and
the offset for the next page of illustrations.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_trending_tags()

	Fetch trending illustrations and tags.

	Returns

	A list of dicts containing an illustration, the
tag name, and the tag translation.

[
 {
 'illustration': Illustration,
 'tag': '艦これ',
 'translated_name': 'Kancolle',
 },
 ...
]

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_bookmark(illustration_id)

	Fetch details about a bookmarked illustration.

	Parameters

	illustration_id (int) – The ID of the bookmarked illustration.

	Returns

	A dictionary containing whether or not the illustration is
bookmarked, the visibility of the bookmark, and a list of tags.

{
 'is_bookmarked': True,
 'visibility': Visibility.PUBLIC,
 'tags': [
 {
 'is_registered': False,
 'name': 'ghostblade',
 },
 ...
],
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
add_bookmark(illustration_id, visibility=<Visibility.PUBLIC: 'public'>)

	Bookmark an illustration.

	Parameters

	
	illustration_id (int) – The ID of the illustration.

	visibility (Visibility) – The visibility of the bookmark.

	Raises

	requests.RequestException – If the request fails.

	
delete_bookmark(illustration_id)

	Delete a bookmark.

	Parameters

	illustration_id (int) – The ID of the illustration.

	Raises

	requests.RequestException – If the request fails.

	
fetch_user(user_id)

	Fetch details about a Pixiv user.

	Parameters

	user_id (int) – The ID of the user.

	Returns

	A FullUser object.

	Return type

	FullUser

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_user_illustrations(user_id, content_type=<ContentType.ILLUSTRATION: 'illust'>, offset=None)

	Fetch the illustrations posted by a user.

	Parameters

	
	user_id (int) – The ID of the user.

	content_type (ContentType) – The type of content to fetch. Accepts
ILLUSTRATION and MANGA.

	offset (int) – The number of illustrations/manga to offset by.

	Returns

	A dictionary containing the user’s illustrations and the
offset to get the next page of their illustrations. If there
is no next page, offset will be None.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_user_bookmarks(user_id, visibility=<Visibility.PUBLIC: 'public'>, max_bookmark_id=None, tag=None)

	Fetch the illustrations bookmarked by a user. A maximum of TODO
illustrations are returned in a response.

	Parameters

	
	user_id (int) – The ID of the user.

	visibility (Visibility) – The visibility of the bookmarks.
Applies only to requests for one’s own bookmarks. If set to
Visibility.PRIVATE for another user, their public bookmarks
will be returned.

	max_bookmark_id (int) – The ID of the maximum bookmark,
similar to offset for other endpoints.

	tag (str) – The bookmark tag to filter bookmarks by. These tags
can be fetched from Client.fetch_user_bookmark_tags.

	Returns

	A dictionary containing the user’s bookmarks and the
max_bookmark_id needed to get the next page of their
bookmarks. If there is no next page, max_bookmark_id
will be None.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # `max_bookmark_id` for the next page of bookmarks.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_user_bookmark_tags(user_id, visibility=<Visibility.PUBLIC: 'public'>, offset=None)

	Fetch the bookmark tags that belong to the user. A maximum of
30 tags are returned in a response.

	Parameters

	
	user_id (int) – The ID of the user whose bookmark tags
to fetch.

	visibility (Visibility) – The visibility of the tags.
Will raise an error if another user’s private tags are
requested.

	offset (int) – The number of tags to offset by.

	Returns

	A dictionary containing the user’s bookmark tags
and the offset needed to get the next page of their
bookmark tags. If there is no next page, offset
will be None.

{
 'bookmark_tags': [# List of bookmark tags.
 {
 'count': 5, # Number of bookmarks with the tag.
 'name': 'a-bookmark-tag',
 },
 ...
],
 'next': 30, # Offset for the next page of bookmark tags.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON or if
another user’s private tags are requested.

	
fetch_following(user_id, visibility=<Visibility.PUBLIC: 'public'>, offset=None)

	Fetch the users that a user is following. A maximum of 30
users are returned in a response.

	Parameters

	
	user_id (int) – The ID of the user.

	visibility (Visibility) – The visibility of the followed
users. Applies only to one’s own follows. If
Visibility.PRIVATE is applied to another user, their
publicly followed users will be returned.

	offset (int) – The number of users to offset by.

	Returns

	A dictionary containing the a list of previews for
the followed users and and the offset needed to get the
next page of user previews. If there is no next page,
offset will be None.

{
 'user_previews': [# List of bookmark tags.
 {
 'illustrations': [# Their 3 most recent illustrations.
 Illustration,
 Illustration,
 Illustration,
],
 'is_muted': False, # Are they muted?
 'novels': [# Their 3 most recent novels.
 Novel,
 Novel,
 Novel,
],
 'user': User, # Basic information about the user.
 },
 ...
],
 'next': 30, # Offset for the next page of user previews.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_followers(offset=None)

	Fetch the users that are following the requesting user.

	Parameters

	offset (int) – The number of users to offset by.

	Returns

	A dictionary containing the a list of previews for
the users that follow the the requesting user and and the
offset needed to get the next page of user previews. If
there is no next page, offset will be None.

{
 'user_previews': [# List of bookmark tags.
 {
 'illustrations': [# Their 3 most recent illustrations.
 Illustration,
 Illustration,
 Illustration,
],
 'is_muted': False, # Are they muted?
 'novels': [# Preview of their novels.
 Novel,
 Novel,
 Novel,
],
 'user': User, # Basic information about the user.
 },
 ...
],
 'next': 30, # Offset for the next page of user previews.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

Models

	
class pixivapi.models.User(account, id, name, profile_image_urls, is_followed=None)

	Bases: object

A model that represents a user. Not all instance variables
will be populated; the variables that are populated depends
on the endpoint that the user is fetched from.

Typically, the profile_image_urls dict will contain a 'medium'
key.

	Variables

	
	account (str) – Their account name

	id (int) – Their account ID

	name (str) – Their display name

	profile_image_urls (dict) – A dictionary of URLs for their profile
image. The keys are the size and the value is the URL.

	is_followed (bool) – If the user is followed. If the endpoint
does not return this (e.g. comments), it will be None.

	
class pixivapi.models.Account(profile_image_urls, account, id, name, mail_address, is_premium, x_restrict, is_mail_authorized)

	Bases: pixivapi.models.User

A model for the authenticating user that inherits from User.
The properties present in the User model are also present here.

The profile images have the sizes 16x16, 50x50, 170x170.

	Variables

	
	mail_address (str) – The user’s email

	is_premium (bool) – Whether or not user has Pixiv premium

	x_restrict (int) – User’s x restriction

	is_mail_authorized (bool) – Whether user’s email was authorized

	
class pixivapi.models.FullUser(account, id, name, profile_image_urls, is_followed=None, comment=None, profile=None, profile_publicity=None, workspace=None)

	Bases: pixivapi.models.User

This model inherits the properties that the User model has.

	Variables

	
	comment (str) – The comment on the user’s account. Only provided
when fetching user via Client.fetch_user.

	profile (dict) – Profile information fetched from the
Client.fetch_user endpoint. Example below.

{
 'address_id': 01,
 'background_image_url': None,
 'birth': '',
 'birth_day': '01-01',
 'birth_year': 0,
 'country_code': 'CN',
 'gender': '',
 'is_premium': True,
 'is_using_custom_profile_image': True,
 'job': 'Something',
 'job_id': 1,
 'pawoo_url': (
 'https://pawoo.net/oauth_authentications/123?provider=pixiv'
),
 'region': 'China',
 'total_follow_users': 0,
 'total_illust_bookmarks_public': 1,
 'total_illust_series': 0,
 'total_illusts': 0,
 'total_manga': 0,
 'total_mypixiv_users': 0,
 'total_novel_series': 0,
 'total_novels': 0,
 'twitter_account': 'twittername',
 'twitter_url': 'https://twitter.com/twittername',
 'webpage': 'https://webpage.com'
}

	profile_publicity (dict) – A dictionary detailling which parts
of the user’s profile are public and which are private. Only
provided from the Client.fetch_user endpoint. Example below.

{
 'birth_day': 'public',
 'birth_year': 'public',
 'gender': 'public',
 'job': 'public',
 'pawoo': True,
 'region': 'public'
}

	workspace (dict) – A dictionary containing information about the
user’s workspace. Only provided from the Client.fetch_user
endpoint. Example below.

{
 'chair': '',
 'comment': '',
 'desk': '',
 'desktop': '',
 'monitor': '',
 'mouse': '',
 'music': '',
 'pc': '',
 'printer': '',
 'scanner': '',
 'tablet': '',
 'tool': '',
 'workspace_image_url': None
}

	
class pixivapi.models.Illustration(caption, create_date, height, id, image_urls, is_bookmarked, is_muted, meta_pages, meta_single_page, page_count, restrict, sanity_level, series, tags, title, tools, total_bookmarks, total_view, type, user, visible, width, x_restrict, client=None, total_comments=None)

	Bases: object

The illustration models encapsulates an illustration and provides
methods for convenient fetching of related objects.

	Variables

	
	caption (str) – Caption

	create_date (datetime.datetime) – Creation date

	height (int) – Height

	id (int) – ID

	image_urls (dict) – A dict of Image URLs mapping the Size enum
to the URL. If the image has multiple pages, Size.ORIGINAL
will be None.

	is_bookmarked (bool) – If the image is bookmarked.

	is_muted (bool) – If the image is muted.

	meta_pages (list) – If the image has multiple
images, list this will be a list of dicts mapping the Size
enum to image urls. If not, this will be an empty list.

	page_count (int) – The number of pages.

	restrict (int) – The restriction.

	sanity_level (int) – The sanity level.

	series – If the illustration is in a series, this will be a dict
with the id and title key/value pairs of the series.
If the illustration is not in a series, this will be None.

	tags (list) – A list of dicts containing two keys: name
and translated_name. The translated_name will be
None if the client language is not set.

	title (str) – The title of the work.

	tools (list) – The listed tools used to create the illustration.

	total_bookmarks (int) – The number of times the illustration has
been bookmarked.

	total_view (int) – The number of times the illustration has been viewed.

	type (ContentType) – The content type (illustration, manga).

	user (User) – The artist of the image.

	visible (bool) – The visibility.

	width (int) – The width of the illustration.

	x_restrict (int) – The x restrict.

	client (Client) – The client used to fetch the image information.

	total_comments (int) – The total number of comments on the illustration.
This value may be None depending on which method this illustration
was fetched from. For example, this value is not returned when
searching illustrations.

	
download(directory, size=<Size.ORIGINAL: 'original'>, filename=None)

	Download the illustration to the desired directory. If the
illustration has multiple pages, a folder will be created and
the images placed inside.

	Parameters

	
	directory (pathlib.Path) – The illustration will be downloaded
to this directory.

	size (Size) – The size of the image to download.

	filename – Do not include the file extension. This will be
the filename of a single-page illustration and the folder name
of a multi-page illustration. By default this will be the
ID of the illustration.

	Raises

	
	requests.RequestException – If the request fails.

	FileNotFoundError – If the destination’s directory does
not exist.

	PermissionError – If the destination cannot be written to.

	
class pixivapi.models.Novel(caption, create_date, id, image_urls, is_bookmarked, is_muted, is_mypixiv_only, is_x_restricted, page_count, restrict, series, tags, text_length, title, total_bookmarks, total_comments, total_view, user, visible, x_restrict, client=None)

	Bases: object

A model that encapsulates a novel.

	Variables

	
	caption (str) – Caption

	create_date (datetime.datetime) – Creation date

	id (int) – ID

	image_urls (dict) – A dict of Image URLs mapping the Size enum
to the URL. There is no Size.ORIGINAL.

	is_bookmarked (bool) – If the novel is bookmarked.

	is_muted (bool) – If the novel is muted.

	page_count (int) – The number of pages.

	restrict (int) – The restriction.

	series – If the novel is in a series, this will be a dict
with the id and title key/value pairs of the series.
If the novel is not in a series, this will be None.

	tags (list) – A list of dicts containing three keys: name,
translated_name, and added_by_uploaded_user.
The translated_name will be None if the client language
is not set.

	text_length (int) – The length of the novel.

	title (str) – The title of the novel.

	total_bookmarks (int) – The number of times the novel has been
bookmarked.

	total_comments (int) – The total number of comments on the novel.

	total_view (int) – The number of times the novel has been viewed.

	user (User) – The author of the novel.

	visible (bool) – The visibility.

	x_restrict (int) – The x restrict.

	client (Client) – The client used to fetch the novel information.

	
class pixivapi.models.Comment(comment, date, id, parent_comment, user, client=None)

	Bases: object

A model that encapsulates a comment.

	Variables

	
	comment (str) – Content of the comment

	date (datetime.datetime) – Date the comment was posted

	id (int) – ID of the comment

	parent_comment (Comment) – A parent comment to this comment
(can be None)

	user (User) – The poster of the comment. Does not return whether
or not the user is followed.

Enums

	
class pixivapi.enums.ContentType

	This Enum represents the various types of content that are
present on Pixiv.

	
ILLUSTRATION = 'illust'

	

	
MANGA = 'manga'

	

	
UGOIRA = 'ugoira'

	

	
NOVEL = 'novel'

	

	
class pixivapi.enums.Duration

	This Enum is used when searching Pixiv to limit the age of the
returned results.

	
LAST_DAY = 'within_last_day'

	

	
LAST_WEEK = 'within_last_week'

	

	
LAST_MONTH = 'within_last_month'

	

	
class pixivapi.enums.RankingMode

	This Enum is used to specify which ranking list of illustrations
should be fetched.

	
DAY = 'day'

	

	
WEEK = 'week'

	

	
MONTH = 'month'

	

	
DAY_MALE = 'day_male'

	

	
DAY_FEMALE = 'day_female'

	

	
WEEK_ORIGINAL = 'week_original'

	

	
WEEK_ROOKIE = 'week_rookie'

	

	
DAY_MANGA = 'day_manga'

	

	
class pixivapi.enums.SearchTarget

	This Enum determines how the search should match the searched
words to the possible results.

	
TAGS_PARTIAL = 'partial_match_for_tags'

	

	
TAGS_EXACT = 'exact_match_for_tags'

	

	
TITLE_AND_CAPTION = 'title_and_caption'

	

	
class pixivapi.enums.Size

	This Enum represents the possible sizes of an image. ORIGINAL
has the best quality.

	
LARGE = 'large'

	

	
MEDIUM = 'medium'

	

	
ORIGINAL = 'original'

	

	
SQUARE_MEDIUM = 'square_medium'

	

	
class pixivapi.enums.Sort

	This Enum determines how the search results are sorted by date;
either oldest first or newest first.

	
DATE_DESC = 'date_desc'

	

	
DATE_ASC = 'date_asc'

	

	
class pixivapi.enums.Visibility

	This Enum represents the visibility restrictions that a Pixiv user
can enforce on their bookmarks, followed users, etc.

	
PUBLIC = 'public'

	

	
PRIVATE = 'private'

	

Exceptions

	
exception pixivapi.errors.PixivError

	Bases: Exception

	
exception pixivapi.errors.LoginError

	Bases: pixivapi.errors.PixivError

	
exception pixivapi.errors.AuthenticationRequired

	Bases: pixivapi.errors.PixivError

	
exception pixivapi.errors.BadApiResponse

	Bases: pixivapi.errors.PixivError

Changelog

v0.2

	Change Client.account from a dict to an Account model.

	Remove None attributes from User that only applied to responses from
Client.fetch_user and move them to a FullUser subclass.

	Change return type of Client.fetch_user to a FullUser. No attributes
were changed.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pixivapi	

 	
 	
 pixivapi.client	

 	
 	
 pixivapi.enums	

 	
 	
 pixivapi.errors	

 	
 	
 pixivapi.models	

Index

 A
 | B
 | C
 | D
 | F
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Account (class in pixivapi.models), [1]

 	add_bookmark() (pixivapi.client.Client method), [1]

 	
 	authenticate() (pixivapi.client.Client method), [1]

 	AuthenticationRequired, [1]

B

 	
 	BadApiResponse, [1]

C

 	
 	Client (class in pixivapi.client), [1]

 	
 	Comment (class in pixivapi.models), [1]

 	ContentType (class in pixivapi.enums), [1]

D

 	
 	DATE_ASC (pixivapi.enums.Sort attribute), [1]

 	DATE_DESC (pixivapi.enums.Sort attribute), [1]

 	DAY (pixivapi.enums.RankingMode attribute), [1]

 	DAY_FEMALE (pixivapi.enums.RankingMode attribute), [1]

 	DAY_MALE (pixivapi.enums.RankingMode attribute), [1]

 	
 	DAY_MANGA (pixivapi.enums.RankingMode attribute), [1]

 	delete_bookmark() (pixivapi.client.Client method), [1]

 	download() (pixivapi.client.Client method), [1]

 	(pixivapi.models.Illustration method), [1]

 	Duration (class in pixivapi.enums), [1]

F

 	
 	fetch_bookmark() (pixivapi.client.Client method), [1]

 	fetch_followers() (pixivapi.client.Client method), [1]

 	fetch_following() (pixivapi.client.Client method), [1]

 	fetch_illustration() (pixivapi.client.Client method), [1]

 	fetch_illustration_comments() (pixivapi.client.Client method), [1]

 	fetch_illustration_related() (pixivapi.client.Client method), [1]

 	fetch_illustrations_following() (pixivapi.client.Client method), [1]

 	
 	fetch_illustrations_ranking() (pixivapi.client.Client method), [1]

 	fetch_illustrations_recommended() (pixivapi.client.Client method), [1]

 	fetch_trending_tags() (pixivapi.client.Client method), [1]

 	fetch_user() (pixivapi.client.Client method), [1]

 	fetch_user_bookmark_tags() (pixivapi.client.Client method), [1]

 	fetch_user_bookmarks() (pixivapi.client.Client method), [1]

 	fetch_user_illustrations() (pixivapi.client.Client method), [1]

 	FullUser (class in pixivapi.models), [1]

I

 	
 	Illustration (class in pixivapi.models), [1]

 	
 	ILLUSTRATION (pixivapi.enums.ContentType attribute), [1]

L

 	
 	LARGE (pixivapi.enums.Size attribute), [1]

 	LAST_DAY (pixivapi.enums.Duration attribute), [1]

 	LAST_MONTH (pixivapi.enums.Duration attribute), [1]

 	
 	LAST_WEEK (pixivapi.enums.Duration attribute), [1]

 	login() (pixivapi.client.Client method), [1]

 	LoginError, [1]

M

 	
 	MANGA (pixivapi.enums.ContentType attribute), [1]

 	
 	MEDIUM (pixivapi.enums.Size attribute), [1]

 	MONTH (pixivapi.enums.RankingMode attribute), [1]

N

 	
 	Novel (class in pixivapi.models), [1]

 	
 	NOVEL (pixivapi.enums.ContentType attribute), [1]

O

 	
 	ORIGINAL (pixivapi.enums.Size attribute), [1]

P

 	
 	pixivapi.client (module), [1]

 	pixivapi.enums (module), [1]

 	pixivapi.errors (module), [1]

 	
 	pixivapi.models (module), [1]

 	PixivError, [1]

 	PRIVATE (pixivapi.enums.Visibility attribute), [1]

 	PUBLIC (pixivapi.enums.Visibility attribute), [1]

R

 	
 	RankingMode (class in pixivapi.enums), [1]

S

 	
 	search_illustrations() (pixivapi.client.Client method), [1]

 	SearchTarget (class in pixivapi.enums), [1]

 	
 	Size (class in pixivapi.enums), [1]

 	Sort (class in pixivapi.enums), [1]

 	SQUARE_MEDIUM (pixivapi.enums.Size attribute), [1]

T

 	
 	TAGS_EXACT (pixivapi.enums.SearchTarget attribute), [1]

 	
 	TAGS_PARTIAL (pixivapi.enums.SearchTarget attribute), [1]

 	TITLE_AND_CAPTION (pixivapi.enums.SearchTarget attribute), [1]

U

 	
 	UGOIRA (pixivapi.enums.ContentType attribute), [1]

 	
 	User (class in pixivapi.models), [1]

V

 	
 	Visibility (class in pixivapi.enums), [1]

W

 	
 	WEEK (pixivapi.enums.RankingMode attribute), [1]

 	
 	WEEK_ORIGINAL (pixivapi.enums.RankingMode attribute), [1]

 	WEEK_ROOKIE (pixivapi.enums.RankingMode attribute), [1]

API

Client

	
class pixivapi.client.Client(language='English', client_id='KzEZED7aC0vird8jWyHM38mXjNTY', client_secret='W9JZoJe00qPvJsiyCGT3CCtC6ZUtdpKpzMbNlUGP')

	A client for the Pixiv API.

	Variables

	
	language (str) – The language tag translations should be in.

	client_id (str) – The client ID. Typically, leaving this as
default is ok.

	client_secret (str) – The client secret. Typically, leaving
this as default is ok.

	account (Account) – Basic details of the logged in account.

	access_token (str) – The access token used to authorize requests.

	refresh_token (str) – The refresh token used to obtain new access
tokens.

	session (requests.Session) – The requests session.

	
download(url, destination, referer='https://pixiv.net')

	Download a file to a given destination. This method uses
the client’s access token if available.

	Parameters

	
	url (str) – The URL to the file.

	destination – The destination file. Must be writeable.

	referer (str) – The Referer header.

	Raises

	
	FileNotFoundError – If the destination’s directory does
not exist.

	PermissionError – If the destination cannot be written to.

	
login(username, password)

	Log in with username and password to fetch an access token
and a refresh token. Assigns the tokens to instance variables.

	Parameters

	
	username (str) – Your username.

	password (str) – Your password.

	Raises

	LoginError – If login fails.

	
authenticate(refresh_token)

	Use a refresh token to obtain a new access token. Assigns
both tokens to instance variables.

	Parameters

	refresh_token (str) – The refresh token.

	Raises

	LoginError – If authentication fails.

	
search_illustrations(word, search_target=<SearchTarget.TAGS_PARTIAL: 'partial_match_for_tags'>, sort=<Sort.DATE_DESC: 'date_desc'>, duration=None, offset=None)

	Search the illustrations. A maximum of 30 illustrations are
returned in one response.

	Parameters

	
	word (str) – The search term.

	search_target (SearchTarget) – The target for the search term.

	sort (Sort) – How to sort the illustrations.

	duration (Duration) – An optional max-age for the illustrations.

	offset (int) – The number of illustrations to offset by.

	Returns

	A dictionary containing the searched illustrations, the
offset for the next page of search images (None if there
is no next page), and the search span limit.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
 'search_span_limit': 31536000,
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustration(illustration_id)

	Fetch the details of a single illustration.

	Parameters

	illustration_id (int) – The ID of the illustration.

	Returns

	An illustration object.

	Return type

	Illustration

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustration_comments(illustration_id, offset=None, include_total_comments=False)

	Fetch the comments of an illustration. A maximum of 30 comments
are returned in one response.

Note: The total_comments key does not equal the number
of comments that will be returned by the API. If requesting all
the comments, use the next key to determine whether or not
to continue, not the total_comments key.

	Parameters

	
	illustration_id (int) – ID of the illustration.

	offset (int) – Number of comments to offset by.

	include_total_comments (bool) – Whether or not to include a
the total number of comments on the illustration. If set to
False, the total_comments key in the response will be 0.

	Returns

	A dictionary containing the comments, the offset for the
next page of comments, and the total number of comments.

{
 'comments': [Comment, ...], # List of comments.
 'next': 30, # Offset to get the next page of comments.
 'total_comments': 142,
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustration_related(illustration_id, offset=None)

	Fetch illustrations related to a specified illustration. A
maximum of TODO are returned in one response.

	Parameters

	
	illustration_id (int) – ID of the illustration.

	offset (int) – Illustrations to offset by.

	Returns

	A dictionary containing the related illustrations and
the offset for the next page of illustrations.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustrations_following(visibility=<Visibility.PUBLIC: 'public'>, offset=None)

	Fetch new illustrations from followed artists. A maximum of 30
illustrations are returned in one response.

	Parameters

	
	visibility (Visibility) – Visibility of the followed artist;
PUBLIC if publicly followed; PRIVATE if privately.

	offset (int) – The number of illustrations to offset by.

	Returns

	A dictionary containing the new illustrations and
the offset for the next page of illustrations.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustrations_recommended(content_type=<ContentType.ILLUSTRATION: 'illust'>, include_ranking_illustrations=False, max_bookmark_id_for_recommend=None, min_bookmark_id_for_recent_illustrations=None, offset=None, bookmark_illust_ids=None, include_ranking_label=True)

	Fetch one’s recommended illustrations.

	Parameters

	
	content_type (ContentType) – The type of content to fetch.
Accepts ILLUSTRATION and MANGA.

	include_ranking_illustrations (bool) – If True, the top
10 ranked illustrations daily are included in the response.
If False, the ranking_illustrations key in the response
dict will be empty.

	max_bookmark_id_for_recommend (int) – The maximum bookmark
ID for recommended illustrations, used for changing the
returned illustrations.

	min_bookmark_id_for_recent_illustrations (int) – The minimum
bookmark ID for recent illustrations, used for changing
the returned illustrations.

	offset (int) – The number of illustrations to offset by.

	bookmark_illust_ids (list) – A list of illustration IDs.

	include_ranking_label (bool) – Whether or not to include
the ranking label.

	Returns

	A dictionary containing the recommended illustrations and
the parameters for the next page of illustrations.

{
 'contest_exists': False, # Does a contest exist?
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': { # Parameters to get the next set of illustrations.
 'min_bookmark_id_for_recent_illustrations': 6277740037,
 'max_bookmark_id_for_recommend': 6268205545,
 'offset': 0,
 },
 'ranking_illustrations': [Illustration, ...] # Ranking illust.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_illustrations_ranking(mode=<RankingMode.DAY: 'day'>, date=None, offset=None)

	Fetch the ranking illustrations. A maximum of TODO are returned
in one response.

	Parameters

	
	mode (RankingMode) – The ranking list to fetch.

	date (str) – The date of the list, in %Y-%m-%d format.

	offset (int) – The number of illustrations to offset by.

	Returns

	A dictionary containing the ranking illustrations and
the offset for the next page of illustrations.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_trending_tags()

	Fetch trending illustrations and tags.

	Returns

	A list of dicts containing an illustration, the
tag name, and the tag translation.

[
 {
 'illustration': Illustration,
 'tag': '艦これ',
 'translated_name': 'Kancolle',
 },
 ...
]

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_bookmark(illustration_id)

	Fetch details about a bookmarked illustration.

	Parameters

	illustration_id (int) – The ID of the bookmarked illustration.

	Returns

	A dictionary containing whether or not the illustration is
bookmarked, the visibility of the bookmark, and a list of tags.

{
 'is_bookmarked': True,
 'visibility': Visibility.PUBLIC,
 'tags': [
 {
 'is_registered': False,
 'name': 'ghostblade',
 },
 ...
],
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
add_bookmark(illustration_id, visibility=<Visibility.PUBLIC: 'public'>)

	Bookmark an illustration.

	Parameters

	
	illustration_id (int) – The ID of the illustration.

	visibility (Visibility) – The visibility of the bookmark.

	Raises

	requests.RequestException – If the request fails.

	
delete_bookmark(illustration_id)

	Delete a bookmark.

	Parameters

	illustration_id (int) – The ID of the illustration.

	Raises

	requests.RequestException – If the request fails.

	
fetch_user(user_id)

	Fetch details about a Pixiv user.

	Parameters

	user_id (int) – The ID of the user.

	Returns

	A FullUser object.

	Return type

	FullUser

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_user_illustrations(user_id, content_type=<ContentType.ILLUSTRATION: 'illust'>, offset=None)

	Fetch the illustrations posted by a user.

	Parameters

	
	user_id (int) – The ID of the user.

	content_type (ContentType) – The type of content to fetch. Accepts
ILLUSTRATION and MANGA.

	offset (int) – The number of illustrations/manga to offset by.

	Returns

	A dictionary containing the user’s illustrations and the
offset to get the next page of their illustrations. If there
is no next page, offset will be None.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # Offset to get the next page of illustrations.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_user_bookmarks(user_id, visibility=<Visibility.PUBLIC: 'public'>, max_bookmark_id=None, tag=None)

	Fetch the illustrations bookmarked by a user. A maximum of TODO
illustrations are returned in a response.

	Parameters

	
	user_id (int) – The ID of the user.

	visibility (Visibility) – The visibility of the bookmarks.
Applies only to requests for one’s own bookmarks. If set to
Visibility.PRIVATE for another user, their public bookmarks
will be returned.

	max_bookmark_id (int) – The ID of the maximum bookmark,
similar to offset for other endpoints.

	tag (str) – The bookmark tag to filter bookmarks by. These tags
can be fetched from Client.fetch_user_bookmark_tags.

	Returns

	A dictionary containing the user’s bookmarks and the
max_bookmark_id needed to get the next page of their
bookmarks. If there is no next page, max_bookmark_id
will be None.

{
 'illustrations': [Illustration, ...], # List of illustrations.
 'next': 30, # `max_bookmark_id` for the next page of bookmarks.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_user_bookmark_tags(user_id, visibility=<Visibility.PUBLIC: 'public'>, offset=None)

	Fetch the bookmark tags that belong to the user. A maximum of
30 tags are returned in a response.

	Parameters

	
	user_id (int) – The ID of the user whose bookmark tags
to fetch.

	visibility (Visibility) – The visibility of the tags.
Will raise an error if another user’s private tags are
requested.

	offset (int) – The number of tags to offset by.

	Returns

	A dictionary containing the user’s bookmark tags
and the offset needed to get the next page of their
bookmark tags. If there is no next page, offset
will be None.

{
 'bookmark_tags': [# List of bookmark tags.
 {
 'count': 5, # Number of bookmarks with the tag.
 'name': 'a-bookmark-tag',
 },
 ...
],
 'next': 30, # Offset for the next page of bookmark tags.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON or if
another user’s private tags are requested.

	
fetch_following(user_id, visibility=<Visibility.PUBLIC: 'public'>, offset=None)

	Fetch the users that a user is following. A maximum of 30
users are returned in a response.

	Parameters

	
	user_id (int) – The ID of the user.

	visibility (Visibility) – The visibility of the followed
users. Applies only to one’s own follows. If
Visibility.PRIVATE is applied to another user, their
publicly followed users will be returned.

	offset (int) – The number of users to offset by.

	Returns

	A dictionary containing the a list of previews for
the followed users and and the offset needed to get the
next page of user previews. If there is no next page,
offset will be None.

{
 'user_previews': [# List of bookmark tags.
 {
 'illustrations': [# Their 3 most recent illustrations.
 Illustration,
 Illustration,
 Illustration,
],
 'is_muted': False, # Are they muted?
 'novels': [# Their 3 most recent novels.
 Novel,
 Novel,
 Novel,
],
 'user': User, # Basic information about the user.
 },
 ...
],
 'next': 30, # Offset for the next page of user previews.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

	
fetch_followers(offset=None)

	Fetch the users that are following the requesting user.

	Parameters

	offset (int) – The number of users to offset by.

	Returns

	A dictionary containing the a list of previews for
the users that follow the the requesting user and and the
offset needed to get the next page of user previews. If
there is no next page, offset will be None.

{
 'user_previews': [# List of bookmark tags.
 {
 'illustrations': [# Their 3 most recent illustrations.
 Illustration,
 Illustration,
 Illustration,
],
 'is_muted': False, # Are they muted?
 'novels': [# Preview of their novels.
 Novel,
 Novel,
 Novel,
],
 'user': User, # Basic information about the user.
 },
 ...
],
 'next': 30, # Offset for the next page of user previews.
}

	Return type

	dict

	Raises

	
	requests.RequestException – If the request fails.

	BadApiResponse – If the response is not valid JSON.

Models

	
class pixivapi.models.User(account, id, name, profile_image_urls, is_followed=None)

	Bases: object

A model that represents a user. Not all instance variables
will be populated; the variables that are populated depends
on the endpoint that the user is fetched from.

Typically, the profile_image_urls dict will contain a 'medium'
key.

	Variables

	
	account (str) – Their account name

	id (int) – Their account ID

	name (str) – Their display name

	profile_image_urls (dict) – A dictionary of URLs for their profile
image. The keys are the size and the value is the URL.

	is_followed (bool) – If the user is followed. If the endpoint
does not return this (e.g. comments), it will be None.

	
class pixivapi.models.Account(profile_image_urls, account, id, name, mail_address, is_premium, x_restrict, is_mail_authorized)

	Bases: pixivapi.models.User

A model for the authenticating user that inherits from User.
The properties present in the User model are also present here.

The profile images have the sizes 16x16, 50x50, 170x170.

	Variables

	
	mail_address (str) – The user’s email

	is_premium (bool) – Whether or not user has Pixiv premium

	x_restrict (int) – User’s x restriction

	is_mail_authorized (bool) – Whether user’s email was authorized

	
class pixivapi.models.FullUser(account, id, name, profile_image_urls, is_followed=None, comment=None, profile=None, profile_publicity=None, workspace=None)

	Bases: pixivapi.models.User

This model inherits the properties that the User model has.

	Variables

	
	comment (str) – The comment on the user’s account. Only provided
when fetching user via Client.fetch_user.

	profile (dict) – Profile information fetched from the
Client.fetch_user endpoint. Example below.

{
 'address_id': 01,
 'background_image_url': None,
 'birth': '',
 'birth_day': '01-01',
 'birth_year': 0,
 'country_code': 'CN',
 'gender': '',
 'is_premium': True,
 'is_using_custom_profile_image': True,
 'job': 'Something',
 'job_id': 1,
 'pawoo_url': (
 'https://pawoo.net/oauth_authentications/123?provider=pixiv'
),
 'region': 'China',
 'total_follow_users': 0,
 'total_illust_bookmarks_public': 1,
 'total_illust_series': 0,
 'total_illusts': 0,
 'total_manga': 0,
 'total_mypixiv_users': 0,
 'total_novel_series': 0,
 'total_novels': 0,
 'twitter_account': 'twittername',
 'twitter_url': 'https://twitter.com/twittername',
 'webpage': 'https://webpage.com'
}

	profile_publicity (dict) – A dictionary detailling which parts
of the user’s profile are public and which are private. Only
provided from the Client.fetch_user endpoint. Example below.

{
 'birth_day': 'public',
 'birth_year': 'public',
 'gender': 'public',
 'job': 'public',
 'pawoo': True,
 'region': 'public'
}

	workspace (dict) – A dictionary containing information about the
user’s workspace. Only provided from the Client.fetch_user
endpoint. Example below.

{
 'chair': '',
 'comment': '',
 'desk': '',
 'desktop': '',
 'monitor': '',
 'mouse': '',
 'music': '',
 'pc': '',
 'printer': '',
 'scanner': '',
 'tablet': '',
 'tool': '',
 'workspace_image_url': None
}

	
class pixivapi.models.Illustration(caption, create_date, height, id, image_urls, is_bookmarked, is_muted, meta_pages, meta_single_page, page_count, restrict, sanity_level, series, tags, title, tools, total_bookmarks, total_view, type, user, visible, width, x_restrict, client=None, total_comments=None)

	Bases: object

The illustration models encapsulates an illustration and provides
methods for convenient fetching of related objects.

	Variables

	
	caption (str) – Caption

	create_date (datetime.datetime) – Creation date

	height (int) – Height

	id (int) – ID

	image_urls (dict) – A dict of Image URLs mapping the Size enum
to the URL. If the image has multiple pages, Size.ORIGINAL
will be None.

	is_bookmarked (bool) – If the image is bookmarked.

	is_muted (bool) – If the image is muted.

	meta_pages (list) – If the image has multiple
images, list this will be a list of dicts mapping the Size
enum to image urls. If not, this will be an empty list.

	page_count (int) – The number of pages.

	restrict (int) – The restriction.

	sanity_level (int) – The sanity level.

	series – If the illustration is in a series, this will be a dict
with the id and title key/value pairs of the series.
If the illustration is not in a series, this will be None.

	tags (list) – A list of dicts containing two keys: name
and translated_name. The translated_name will be
None if the client language is not set.

	title (str) – The title of the work.

	tools (list) – The listed tools used to create the illustration.

	total_bookmarks (int) – The number of times the illustration has
been bookmarked.

	total_view (int) – The number of times the illustration has been viewed.

	type (ContentType) – The content type (illustration, manga).

	user (User) – The artist of the image.

	visible (bool) – The visibility.

	width (int) – The width of the illustration.

	x_restrict (int) – The x restrict.

	client (Client) – The client used to fetch the image information.

	total_comments (int) – The total number of comments on the illustration.
This value may be None depending on which method this illustration
was fetched from. For example, this value is not returned when
searching illustrations.

	
download(directory, size=<Size.ORIGINAL: 'original'>, filename=None)

	Download the illustration to the desired directory. If the
illustration has multiple pages, a folder will be created and
the images placed inside.

	Parameters

	
	directory (pathlib.Path) – The illustration will be downloaded
to this directory.

	size (Size) – The size of the image to download.

	filename – Do not include the file extension. This will be
the filename of a single-page illustration and the folder name
of a multi-page illustration. By default this will be the
ID of the illustration.

	Raises

	
	requests.RequestException – If the request fails.

	FileNotFoundError – If the destination’s directory does
not exist.

	PermissionError – If the destination cannot be written to.

	
class pixivapi.models.Novel(caption, create_date, id, image_urls, is_bookmarked, is_muted, is_mypixiv_only, is_x_restricted, page_count, restrict, series, tags, text_length, title, total_bookmarks, total_comments, total_view, user, visible, x_restrict, client=None)

	Bases: object

A model that encapsulates a novel.

	Variables

	
	caption (str) – Caption

	create_date (datetime.datetime) – Creation date

	id (int) – ID

	image_urls (dict) – A dict of Image URLs mapping the Size enum
to the URL. There is no Size.ORIGINAL.

	is_bookmarked (bool) – If the novel is bookmarked.

	is_muted (bool) – If the novel is muted.

	page_count (int) – The number of pages.

	restrict (int) – The restriction.

	series – If the novel is in a series, this will be a dict
with the id and title key/value pairs of the series.
If the novel is not in a series, this will be None.

	tags (list) – A list of dicts containing three keys: name,
translated_name, and added_by_uploaded_user.
The translated_name will be None if the client language
is not set.

	text_length (int) – The length of the novel.

	title (str) – The title of the novel.

	total_bookmarks (int) – The number of times the novel has been
bookmarked.

	total_comments (int) – The total number of comments on the novel.

	total_view (int) – The number of times the novel has been viewed.

	user (User) – The author of the novel.

	visible (bool) – The visibility.

	x_restrict (int) – The x restrict.

	client (Client) – The client used to fetch the novel information.

	
class pixivapi.models.Comment(comment, date, id, parent_comment, user, client=None)

	Bases: object

A model that encapsulates a comment.

	Variables

	
	comment (str) – Content of the comment

	date (datetime.datetime) – Date the comment was posted

	id (int) – ID of the comment

	parent_comment (Comment) – A parent comment to this comment
(can be None)

	user (User) – The poster of the comment. Does not return whether
or not the user is followed.

Enums

	
class pixivapi.enums.ContentType

	This Enum represents the various types of content that are
present on Pixiv.

	
ILLUSTRATION = 'illust'

	

	
MANGA = 'manga'

	

	
UGOIRA = 'ugoira'

	

	
NOVEL = 'novel'

	

	
class pixivapi.enums.Duration

	This Enum is used when searching Pixiv to limit the age of the
returned results.

	
LAST_DAY = 'within_last_day'

	

	
LAST_WEEK = 'within_last_week'

	

	
LAST_MONTH = 'within_last_month'

	

	
class pixivapi.enums.RankingMode

	This Enum is used to specify which ranking list of illustrations
should be fetched.

	
DAY = 'day'

	

	
WEEK = 'week'

	

	
MONTH = 'month'

	

	
DAY_MALE = 'day_male'

	

	
DAY_FEMALE = 'day_female'

	

	
WEEK_ORIGINAL = 'week_original'

	

	
WEEK_ROOKIE = 'week_rookie'

	

	
DAY_MANGA = 'day_manga'

	

	
class pixivapi.enums.SearchTarget

	This Enum determines how the search should match the searched
words to the possible results.

	
TAGS_PARTIAL = 'partial_match_for_tags'

	

	
TAGS_EXACT = 'exact_match_for_tags'

	

	
TITLE_AND_CAPTION = 'title_and_caption'

	

	
class pixivapi.enums.Size

	This Enum represents the possible sizes of an image. ORIGINAL
has the best quality.

	
LARGE = 'large'

	

	
MEDIUM = 'medium'

	

	
ORIGINAL = 'original'

	

	
SQUARE_MEDIUM = 'square_medium'

	

	
class pixivapi.enums.Sort

	This Enum determines how the search results are sorted by date;
either oldest first or newest first.

	
DATE_DESC = 'date_desc'

	

	
DATE_ASC = 'date_asc'

	

	
class pixivapi.enums.Visibility

	This Enum represents the visibility restrictions that a Pixiv user
can enforce on their bookmarks, followed users, etc.

	
PUBLIC = 'public'

	

	
PRIVATE = 'private'

	

Exceptions

	
exception pixivapi.errors.PixivError

	Bases: Exception

	
exception pixivapi.errors.LoginError

	Bases: pixivapi.errors.PixivError

	
exception pixivapi.errors.AuthenticationRequired

	Bases: pixivapi.errors.PixivError

	
exception pixivapi.errors.BadApiResponse

	Bases: pixivapi.errors.PixivError

Changelog

v0.2

	Change Client.account from a dict to an Account model.

	Remove None attributes from User that only applied to responses from
Client.fetch_user and move them to a FullUser subclass.

	Change return type of Client.fetch_user to a FullUser. No attributes
were changed.

Quickstart

To start making requests to the Pixiv API, instantiate a client object.

from pixivapi import Client

client = Client()

The client can be authenticated to Pixiv’s API in multiple ways. One is by
logging in with a username and password:

client.login('username', 'password')

And another is with a refresh token.

client.authenticate('refresh_token')

Once authenticated, a refresh token can be saved for future authorizations.

refresh_token = client.refresh_token

After authenticating, the client can begin making requests to all of the
Pixiv endpoints. For example, the following code block downloads an
image from Pixiv.

from pathlib import Path
from pixivapi import Size

illustration = client.fetch_illustration(75523989)
illustration.download(
 directory=Path.home() / 'my_pixiv_images',
 size=Size.ORIGINAL,
)

And the next code block downloads all illustrations of an artist.

from pathlib import Path
from pixivapi import Size

artist_id = 2188232
directory = Path.home() / 'wlop'

response = client.fetch_user_illustrations(artist_id)
while response['next']:
 for illust in response['illustrations']:
 illust.download(directory=directory, size=Size.ORIGINAL)

 if response['next']:
 response = client.fetch_user_illustrations(
 artist_id,
 offset=response['next'],
)

 nav.xhtml

 Table of Contents

 		
 pixiv-api documentation

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

